Publicações relacionadas à zika

In:

The Lancet

In May, 2015, locally acquired cases of Zika virus—an arbovirus found in Africa and Asia-Pacifi c and transmitted via Aedes mosquitoes—were confi rmed in Brazil. The presence of Aedes mosquitoes across Latin America, coupled with suitable climatic conditions, have triggered a Zika virus epidemic in Brazil, currently estimated at 440 000–1 300 000 cases.1 Viraemic travellers have now introduced Zika virus into at least 13 additional countries, where susceptible Aedes mosquitoes have become infected and perpetuated local transmission cycles. In Brazil, a precipitous surge in infants born with microcephaly and the detection of Zika virus RNA in the amniotic fl uid of aff ected newborns has been reported.1 We sought to identify high-risk international pathways for the dispersion of Zika virus and global geographies conducive to autochthonous transmission.

Download full publication:

In:

Eurosurveillance

Authors:

M Besnard, S Lastèr, A Teissier, V M Cao-Lormea, D Musso

A Zika virus (ZIKAV) outbreak started in October 2013 in French Polynesia, South Pacific. We describe here the clinical and laboratory features of two mothers and their newborns who had ZIKAV infection as confirmed by ZIKAV RT-PCR performed on serum collected within four days post-delivery in date. The infants’ infection most probably occurred by transplacental transmission or during delivery. Attention should be paid to ZIKAV-infected pregnant women and their newborns, as data on the impact on them are limited.

Since October 2013, French Polynesia has experienced the largest outbreak of Zika virus (ZIKAV) infection ever reported, with an estimate of 28,000 ZIKAV infections in early February 2014 (about 11% of the population). We report here evidence of perinatal transmission of ZIKAV in French Polynesia in December 2013 and February 2014.

Download full publication:

In:

Genome Announcements

Authors:

Cécile Baronti, Géraldine Piorkowski, Rémi N. Charrel, Laetitia Boubis, Isabelle Leparc-Goffart, Xavier de Lamballeriea

Zika virus is an arthropod-borne Flavivirus member of the Spondweni serocomplex, transmitted by Aedes mosquitoes. We report here the complete coding sequence of a Zika virus strain belonging to the Asian lineage, isolated from an infected patient returning from French Polynesia, an epidemic area in 2013/2014.

Download full publication:

In:

Vector-Borne and Zoonotic Diseases

Authors:

Nicolas Berthet, Emmanuel Nakouné, Basile Kamgang, Benjamin Selekon, Stéphane Descorps-Declère, Antoine Gessain, Jean-Claude Manuguerra, and Mirdad Kazanji

Abstract

Zika virus (ZIKV) is an emerging pathogen belonging to the Spondweni serocomplex within the genus Flavivirus. It has been isolated from several mosquito species. Two lineages of ZIKV have been defined by polyprotein homology. Using high-throughput sequencing, we obtained and characterized three complete genomes of ZIKV isolated between 1976 and 1980 in the Central African Republic. The three viruses were isolated from two species of mosquito, Aedes africanus and Ae. opok. Two sequences from Ae. africanus had 99.9% nucleotide sequence identity and 100% amino acid identity, whereas the complete genome obtained from Ae. opok had 98.3% nucleotide identity and 99.4% amino acid identity with the other two genomes. Phylogenetic analysis based on the amino acid sequence of the polyprotein showed that the three ZIKV strains clustered together but diverged from all other ZIKV strains. Our molecular data suggest that a different subtype of West African ZIKV strains circulated in Aedes species in Central Africa.

Download full publication:

In:

Journal of Medical Virology

Authors:

Michelle N.D. Balm, Chun Kiat Lee, Hong Kai Lee, Lily Chiu, Evelyn S.C. Koay and Julian W. Tang

Zika virus (ZIKV) is a mosquito-borne flavivirus. Infection results in a dengue-like illness with fever, headache, malaise, and a maculopapular rash. Nearly all cases are mild and self-limiting but in 2007, a large outbreak of ZIKV was reported from the island of Yap (in Micronesia, northwest of Indonesia). Singapore is already endemic for dengue, and its impact on public health and economic burden is significant. Other dengue-like infections (e.g., Chikungunya virus) are present. Yet only 10% of reported dengue cases have laboratory confirmation. The identification and control of other denguelike, mosquito-transmitted infections is thus important for the health of Singapore’s population, as well as its economy. Given that ZIKV shares the same Aedes mosquito vector with both dengue and Chikungunya, it is possible that this virus is present in Singapore and causing some of the mild dengue-like illness. A specific and sensitive one-step, reverse transcription polymerase chain reaction (RT-PCR) with an internal control (IC) was designed and tested on 88 archived samples of dengue-negative, Chikungunya-negative sera from patients presenting to our hospital with a dengue-like illness, to determine the presence of ZIKV in Singapore. The assay was specific for detection of ZIKV and displayed a lower limit of detection (LoD) of 140 copies viral RNA/reaction when tested on synthetic RNA standards prepared using pooled negative patient plasma. Of the 88 samples tested, none were positive for ZIKV RNA, however, the vast majority of these were from patients admitted to hospital and further study may be warranted in communitybased environments.

Download full publication: