# **Overview of Flavivirus Therapeutics**

Pei-Yong Shi

March 29, 2016



### **Outline**

- Antiviral strategy
- Compounds tested in dengue clinical trials
- Repurposing strategy for Zika therapeutics
- Current status of dengue direct antiviral agents
- Knowledge gaps for Zika virus therapeutics

## **Antiviral strategy**

- Targeting viral proteins
  - Polymerase/reverse transcriptase inhibitors
  - HIV and HCV protease inhibitors
  - HIV integrase inhibitors
  - HCV NS5A inhibitors
  - Attachment and entry inhibitors: small molecule, peptide, antibody
- Targeting host proteins required for viral life cycle
  - HIV CCR5 co-receptor inhibitor (Mavaviroc)
- Stimulating immune system
  - Interferon
  - Immune modulators: RIG-I, MDA5, Sting, and TLR modulators
- Targeting molecular pathways that lead to diseases
  - Molecular pathways that lead to pathogenic diseases should be clearly defined for therapeutic intervention.

#### Flavivirus antiviral approach

#### **Target-based approach**

Viral target with or without enzymatic activity



- 1. Enzyme activity-based HTS
- 2. Fragment-based screening
- 3. Structure-based rational design
- 4. Virtual screening



Hits and leads

#### **Cell-based phenotypic approach**

**Assay development:** 

- 1. Virus infection-based
  - 2. Replicon-based
- 3. Luciferase-reporting virus
- 4. High-content image infection assay

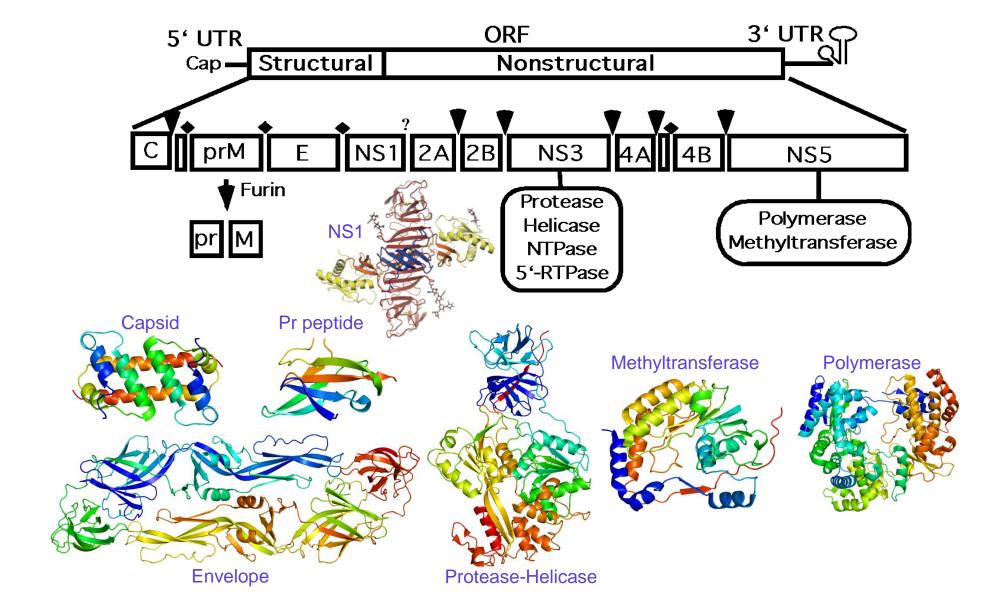
HTS

Hits and leads

Target deconvolution: Host and viral targets

Clinical candidate section

# Compounds tested in dengue clinical trials: Repurposing strategy

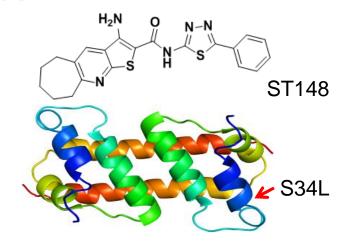

- Inhibit viral targets
  - Balapiravir (J Infect Dis 2013 207(9):1442): excess cytokine production triggered by dengue virus infection prevented the conversion of the balapiravir prodrug to its active form (JVI 83:1740)
- Inhibit host targets that are essential for viral infection cycle
  - Chloroquine: inhibitor of fusion and virion maturation, and modulator of host response to viral infection (PLoS Negl Trop Dis 2012 doi:10.1371)
  - Celgosivir and iminosugar: α-glucosidase inhibitor (Lancet Infect Dis 2014 14:706)
  - Lovastatin: cholesterol synthesis inhibitor and inflammation modulator (Clin Infect Dis 2016 62:468)
- Block the pathological pathways that lead to severe dengue diseases (DHF/DSS)
  - Corticosteroid: inflammation inhibitor (Clin Infect Dis 2012 55:1216)
  - Ketotifen: antihistamine mast cell stabilizer to treat vascular leakage (ongoing)

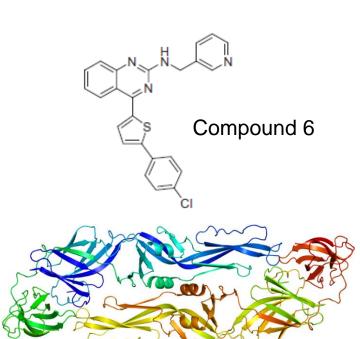
No bona fide inhibitor specifically designed for dengue has ever been tested in clinics.

#### Repurposing strategy for Zika therapy

- Screening clinically approved drugs for potential Zika virus therapy should be performed.
- For any compounds active against Zika virus, does the compound exposure reach efficacious concentration (e.g., >EC<sub>90</sub>) in humans?
  - Human pharmacokinetic data are usually available for clinical compounds.
- Is the repurposed compound fast acting?
  - Fast-acting inhibitors are required to treat acute infections.
- Does pre-infection of Zika virus in patients affect compound potency?
  - Viral infection changes cell physiology that may affect compound potency, especially when the compound is a pro-drug that requires host enzyme metabolism.
- Can the compound reach viral replication sites in humans? What are the cell types that Zika virus infects?
  - Is the compound's tissue/organ distribution known?

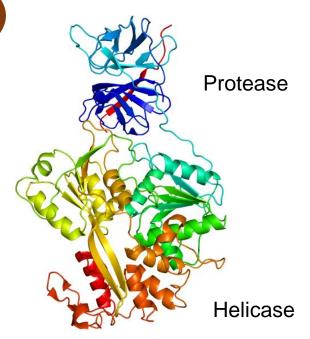
## Flavivirus antiviral targets

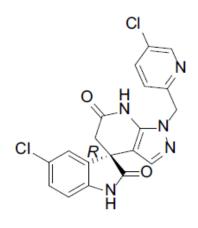




#### Dengue: direct antiviral agents (I)

- Capsid: compound ST148; submicromolar EC<sub>50</sub>; active in dengue AG129 mice (AAC 2013 57:15)
  - Issues: poor solubility and physical chemical property (e.g., solubility); poor formulation and bioavailability

#### Envelope

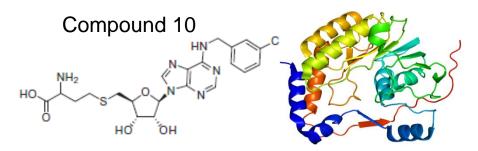

- Therapeutic antibodies: pan-serotype activity, resistance, and cost of therapy in developing countries
- Small molecules: target a pocket between domain-I and domain-II; submicromolar EC<sub>50</sub> poor solubility (e.g., compound 6); no in vivo activity (AAC 2009 53:1823)
- Peptide inhibitors: block envelope stem region foldingback (similar to Enfuvirtide/T20 in HIV); however, flavivirus fusion occurs in endosome, so the peptides need enter cells before exerting antiviral activity





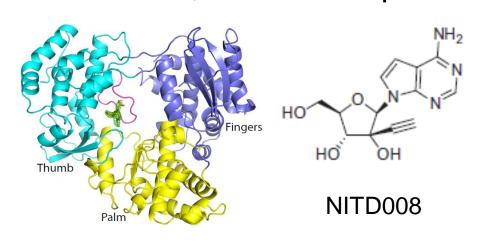

#### Dengue: direct antiviral agents (II)

- Protease: flat substrate-binding surface with two positively charged P1 and P2 residues, making rational design of inhibitors challenging; protease inhibitors with low activity, especially in cell culture
- Helicase: flat substrate binding surface, making it challenging for identifying antiviral inhibitors
- NS4B: the most common viral target with hits identified from cell-based phenotypic screens. Some compounds have good drug-like properties and in vivo activity (e.g., compound 14a).
  - Issues: 1. Lack pan-serotype activity for compounds with good drug-like properties (JVI 2015 89:8233); 2. Lack drug-like properties for compounds with panserotype activities (JVI 2011, 85:11183)






Compound-14a


#### Dengue: direct antiviral agents (III)

■ Methyltransferse: selective inhibitors of flavivirus methyltransferase (e.g., compound 10) could be achieved through rational design, but these inhibitors lack cell permeability (JBC 2011 286:6233)



#### Polymerase

- Non-nucleoside inhibitors: compounds with nanomolar IC<sub>50</sub> against dengue polymerase have been achieved; weak cellular activity due to low cell permeability (JBC 2016 in press)
- **Nucleoside inhibitors**: NITD008 showed cell culture and mouse model activities, but failed in preclinical safety (PNAS 2009 106:26435).



T-705 is active against yellow fever virus in cell culture and in animal model (AAC 2009 53:202).

#### Knowledge gaps for Zika virus therapeutics

- Understand Zika diseases
  - Replication sites in humans (organ, tissue, and cell types) will determine
    (i) cell culture system that should be used for drug discovery; (ii)
    compound distribution in vivo during drug discovery
  - Kinetics of viral infection and disease development in patients determine the window of treatment.
- Point-of-care diagnostics to differentiate infections between Zika, dengue, and Chikungunya viruses.
- Good animal model that recapitulates Zika diseases in humans.
- How to develop antiviral compounds in pregnant patients?